Sustainable Development in the 21st Century

Jan-Niclas Gesenhues

Smart Energy in Mozambique

Drivers, Barriers and Options

Sustainable Development in the 21st Century

Editor Andreas Rechkemmer, Hamad Bin Khalifa University, Doha

Editorial Board Kevin Collins, The Open University, Milton Keynes Sven Bernhard Gareis, WWU Münster Edgar Grande, WZB Berlin Social Science Center Hartmut Ihne, Hochschule Bonn-Rhein-Sieg Maria Ivanova, University of Massachusetts Boston Uwe Schneidewind, Wuppertal Institute Wilhelm Vossenkuhl, Ludwig Maximilians University of Munich

Volume 3

Jan-Niclas Gesenhues

Smart Energy in Mozambique

Drivers, Barriers and Options

© Coverpicture: NASA Earth Observatory image by Joshua Stevens, using MODIS data from the Land Atmosphere Near real-time Capability for EOS (LANCE). Caption by Kathryn Hansen.

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de

a.t.: Münster, Univ., Diss., 2019

ISBN 978-3-8487-6562-1 (Print) 978-3-7489-0679-7 (ePDF)

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN 978-3-8487-6562-1 (Print) 978-3-7489-0679-7 (ePDF)

Library of Congress Cataloging-in-Publication Data

Gesenhues, Jan-Niclas Smart Energy in Mozambique Drivers, Barriers and Options Jan-Niclas Gesenhues 283 pp. Includes bibliographic references.

ISBN 978-3-8487-6562-1 (Print) 978-3-7489-0679-7 (ePDF)

Onlineversion Nomos eLibrary

1. Edition 2020

© Nomos Verlagsgesellschaft, Baden-Baden, Germany 2020. Printed and bound in Germany.

This work is subject to copyright. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage or retrieval system, without prior permission in writing from the publishers. Under § 54 of the German Copyright Law where copies are made for other than private use a fee is payable to "Verwertungsgesellschaft Wort", Munich.

No responsibility for loss caused to any individual or organization acting on or refraining from action as a result of the material in this publication can be accepted by Nomos or the author.

For Annica and Carlotta

Preface

This thesis was accepted as a dissertation at the University of Münster in the summer semester of 2019. It is particularly dedicated to the analysis of decentralized and intelligently networked energy sectors.

Countries around the world are undergoing a paradigm shift in energy supply – from centralized, fossil-fueled supply systems to a decentralized, intelligently networked and climate-friendly structure. Some countries in the global south play a key role in this development. Using Mozambique as an example, this study shows how a digitally networked energy supply system can grow "from below". On this basis, strategies are developed that can contribute to achieving some of the United Nations' Sustainable Development Goals - especially in the areas of energy, climate, health, economy and poverty reduction.

My special thanks go to my two supervisors Prof. Dr. Norbert Kersting and Prof. em. Dr. Paul Kevenhörster, for their scientific and moral support throughout the research process.

I am also very grateful to Prof. Dr. Boaventura Chongo Cuamba from Eduardo Mondlane University of Maputo for his support, expertise and networks. Our scientific cooperation led into a partnership project between Mozambican and German institutions, funded by the German Ministry of Economic Cooperation and Development. This project addresses the needs of the renewable energy sector in Mozambique and is a great opportunity to use the scienfic insights of this thesis in practice.

This work could not have been done without intensive investigations and expert discussions on site in Mozambique. I would, therefore, like to thank all respondents and express my gratitude to the Heinrich Böll Foundation and the German Academic Exchange Service (DAAD) for funding part of my field research in Mozambique and South Africa.

I was priviledged to develop my thesis together with an international group of PhD students with a strong expertise in development politics, digitalization and with much experience from East-African countries. I am especially grateful to my colleagues Phillip Hocks M.A., Dr. Andrew Matsiko and Lia Polotzek M.A. for reviewing the manuscript and for very helpful comments and discussions.

Münster, January 2020

Jan-Niclas Gesenhues

Contents

List of acronyms	13
List of symbols	15
1. Introduction	17
2. The Mozambican electricity sector	23
2.1. Basics of the Mozambican electricity sector	23
2.2. Generation of electricity	25
2.3. Transmission and distribution	26
3. Potentials of smart energy for Mozambique's electricity sector	29
4. Diffusion of an innovation	35
4.1. Principles of innovation diffusion	36
4.2. Innovation diffusion among individuals	41
4.2.1. Knowledge	42
4.2.2. Persuasion	44
4.2.3. Decision	45
4.2.4. Implementation and confirmation	45
4.3. Innovation diffusion in organizations	45
4.3.1. Agenda setting	50
4.3.2. Matching	51
4.3.3. Decision to adopt	51
4.3.4. Redefining and restructuring	52
4.3.5. Clarifying	53
4.3.6. Routinizing	53

Contents

5. Drivers and barriers to a smart electrification in Mozambique	
5.1. The empirical study	55
5.1.1. Methodological approach	55
5.1.2. Basics of the research design	56
5.1.3. Potential drivers and barriers	59
5.1.4. Application of the questionnaire	82
5.1.5. Application of the qualitative interviews	85
5.1.6. Data evaluation	87
5.1.7. Methodological challenges	89
5.2. Main findings	90
5.3. Finance	102
5.3.1. Ability to pay	102
5.3.2. Willingness to pay	107
5.4. Electricity market	112
5.4.1. Market power	112
5.4.2. Tariffs and revenues	119
5.4.3. Transaction costs	123
5.4.4. Digitalization	124
5.4.5. Economic environment	127
5.5. Infrastructure	131
5.5.1. Technological parameters	131
5.5.2. Economies of density	132
5.5.3. Costs and benefits of a smart energy sector	135
5.5.4. Grid management	138
5.6. Governance and stakeholders	140
5.6.1. Goals and political performance	140
5.6.2. Political and violent conflict	142
5.6.3. Public institutions	148
5.6.4. Regulatory framework	150
5.6.5. International cooperation and development assistance	152
5.6.6. Acceptance and stakeholders	155
6. Preliminary conclusions and further steps	165
7. Options for a smart electrification	167
71 Central track	168
7.2 Decentral track	160
7.2.1 Isolated mini grids	172
1.2.1. Isolawa IIIIII 511as	1/2

7.2.2. Connected mini grids7.2.3. Off-grid electrification7.3. Central and decentral track – a brief summary	174 176 179
,	
8. Assessment of Options	183
8.1. Methodology of the empirical study	184
8.1.1. Methodological approach	184
8.1.2. Application of the qualitative interviews	185
8.1.3. Data evaluation	188
8.2. Central smart grid	189
8.2.1. Impact of the barriers	189
8.2.2. Impact of the drivers	194
8.2.3. Overall feasibility	199
8.3. Isolated smart mini grids	201
8.3.1. Impact of the barriers	201
8.3.2. Impact of the drivers	206
8.3.3. Overall feasibility	212
8.4. Connected smart mini grids	214
8.4.1. Impact of the barriers	214
8.4.2. Impact of the drivers	219
8.4.3. Overall feasibility	221
8.5. Smart off-grid solutions	222
8.5.1. Impact of the drivers	222
8.5.2. Impact of the drivers	223
8.5.5. Overall leasibility	229
8.6. Concluding remarks: which role for which option?	231
9. Policy recommendations	241
10. Conclusion and outlook	251
References	259
A. Annex	273

List of acronyms

African Union
Alternating current
Associação Lusófona de Energias Renováveis
Associação Moçambicana de Energias Renováveis
Application
Autoridade Reguladora de Energia
Central Intelligence Agency
Conselho Nacional de Electricidade
Direct current
Electricidade de Moçambique
Energising Development Program
Foreign direct investment
Fundo da Energia, National Energy Fund of Mozambique
Frente de Libertação de Moçambique
Gross domestic product
Gesellschaft für Internationale Zusammenarbeit
Gigawatt hour
Hydroelectricity of Cahora Bassa
Information and communication technology
International Monetary Fund
Instituto Nacional de Estatística
Kilovolt
Kilowatt hour
Ministério de Planificação e Desinvolvimento
New Mozambican Metical
Organization of African Unity
Organization for Economic Co-operation and Development
Pay-as-you-go technologies
Resistência Nacional Moçambicana
Republic of South Africa
South African Development Community
South African Smart Grid Initiative
United Nations

List of acronyms

UNCTAD	United Nations Conference on Trade and Development
WLAN	Wireless Local Area Network
ZANLA	Zimbabwe African National Liberation Army

List of symbols

С	Cost function
D	Demand function
ε	Price-elasticity of demand
тс	Marginal costs
mr	Marginal revenue
n	Sample size
р	Price
p_o	Off-peak-price
p_p	Peak-price
π	Profit
R	Revenue
sd	Standard deviation
и	Utility
μ	Average value
<i>x</i> ^{<i>D</i>}	Demanded quantity of the commodity
x _i	Quantity of the commodity <i>i</i>
xo	Off-peak quantity
x_p	Peak quantity
<i>x</i> ^{<i>S</i>}	Supplied quantity of the commodity
y	Number of clients